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Experiments have been performed on the fundamental physics of wave interaction with an 
obstacle subject to the following basic features. The medium in which the wave propagates 
(liquid with continuous density stratification, which is incompressible and at rest in the 
unperturbed state) is dispersive; the dispersion formula describes the relation between the 
wave number k and the circular frequency ~ in a linear approximation when planar harmonic 
waves propagate in the medium and has an unbounded but denumerable set of branches ~0m(k) (m = 
0, i, 2 .... ). 

That medium provides the basis for an interesting but largely neglected effect: energy 
redistribution between all eigenmodes when only one of them is excited directly, which is 
predicted in the linear approximation, i.e., when the perturbation has infinitesimally small 
energy. That effect occurs in particular when internal waves interact in a continuously 
stratified liquid with an obstacle placed in it. The theoretical basis for this has been 
given [i, 2] for the interaction of waves with a barrier in a liquid having an exponential 
depth density distribution. A survey of other papers can be found in [3]. Here we give a 
way of providing a theoretical basis for the effect that is not related to any particular 
density distribution but instead illustrates how it occurs in experiments with internal waves 
arising from a wing moving over a barrier having a sharp edge or broad threshold. 

The continuous displacement of the wing with respect to the obstacle in the experiments 
led to a nonstationary situation and provides a further distinctive feature. The nonsta- 
tionary feature is accentuated because the wing is accelerated over a short period from a 
state of rest and after prolonged uniform motion is halted rapidly. Finally, the nonlinear- 
ity in a stratified liquid means that perturbations may propagate far ahead of the wing and 
be other than single harmonics [4]. 

i. The experiments were performed in the basin shown schematically in Fig. i, which 
had L = 5 m and width B = 0.2 m. The basin was initially partially filled with a solution of 
glycerol in water having density 01, after which distilled water with density 02 < 01 was 
run onto the surface through Porolon floats. The mixing during the pouring and the molecular 
diffusion resulted in a density distribution p(y): 

Pl 1, Po = ---T-" (1.1) 

Here 6 is the width of the diffuse zone and y the vertical coordinate, which is reckoned up- 
wards from the plane on which p = P0 in the unperturbed state. That plane is called the 
interface. 

We tested (i.I) by experiment with a laser on the basis that any two points 1 and 2 on 
the beam propagating in a transparent medium with refractive index n(y) will obey n I sin 81 = 
n2 sin 82 (8 is the angle between the tangent to the ray and the y axis). This gives a re- 
current algorithm that enables one to use the known nl and 81 with the measured 82 to cal- 
culate n2. We converted n(y) to p(y) on the basis that p(n) is close to linear for small 
variations in p. 

The rise in 6 with time was quite slow. Measurements showed that 6 = 0.9 cm at 0.5 h 
after the filling, 1.5 cm at 3 h, and 2.8 cm at 19 h. If necessary, 6 can be reduced by 
sucking off the liquid from the diffuse region slowly. The minimum attainable 6 was 0.45 cm. 
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Fig. 2 

The barrier 4 (Fig. i) was placed at the bottom, with the top face at a depth b below 
the boundary 2. Three experiment series were performed. In one, the barrier had length 
along the x axis ~ = 48. 1 cm, and in the second, it was 24.2 cm, while in the third it had 
a sharp edge (s + 0). In the first two cases, the barrier is called a broad threshold~ as 
s is comparable with the wavelength I of the incident wave. The perturbations were produced 
by the wing 5, which moved horizontally at zero angle of attack at a distance h = const from 
the boundary with speed 

U [t -- exp (-- t/L) ] for 0 ~ t < iT, 
- -  U = Uo exp (-- t/T2) for t ~ T (1o 2) 

(t is time, while U0, T, TI, and ~2 are parameters). Here T l and ~2 were about 0oi sec, whileT 
was 1 min, so the wing moved with constant velocity U 0 almost throughout its path~ 

The wing had a symmetrical cross section [5], which on a model for a homogeneous un- 
bounded ideal liquid would mean that the flow pattern was equivalent to that for a point 
source with strength q/~UoD = 0.5 and a sink having the same total capacity uniformly dis- 
tributed between points 1 and 2, which are displaced from the source in the U0 direction by 
distances al/D = 0.25 and a2/D = 5.4 (D is the wing thickness, with those parameters corre- 
sponding to elongation s = 6). 

The basic adjustable parameters were 6/b and Fr = 2v (2 + s)U~/eg~ which were varied 
in the ranges 0.34 5 ~/b 5 5.5 and 0.5 S Fr < i00. The others were chosen such that the wave 
pattern was as simple as possible in the absence of the barrier. For example, h/~ was taken 
quite large to minimize the effects on the wave from the hydrodynamic wake behind the wing, 
while ~I/T and T2/T were small so that the law of (1.2) could be approximated by a stepped 
function. 
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Fig. 3 

Fig. 4 

Fig. 5 

The wave processes were recorded by cinematography and also by two immobile wave meters 
3. The visualization was provided by an ink solution of given density. The meters recorded 
the conductivity between two vertical electrodes, the output signal e(t) being related to 
the density p(y, t) by 

Y$ 

e = eo + C J p d y  
Yl 

(e 0 and C are constants, while Yl and Y2 are the ordinates for the lower and upper ends of 
the electrodes). Point Yl was in the lower layer with density Pl, and Y2 was in the upper 
layer having P2, with obedience to the conditions 6/(y 2 - Yl) << i, A~/(y 2 - Yl) << 1 (Aq 
is the observed range in the pycnocline fluctuations). Under these conditions, e = e 0 + CI~ 
(N is the deviation in the boundary from the equilibrium position and CI = const). 
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The waves were damped at the ends by the plate 1 at 4 ~ to the horizontal. Reflection 
from that plate reduced the wavelength sharply and thus caused rapid viscous attenuation at 
a rate proportional to k 2 because of the nonlinear processes and the above linear redistri- 
bution between modes. The waves reflected from the inclined plate arrived at the nearer 
wave meter attenuated by more than an order of magnitude. 

Fig. 2 shows mm(k) dispersion curves for m ~ 5 derived by computation for s = 0.013, 
HI/6 = 17.8, H2/5 = 18, 5 = 0.9 cm (H l and H 2 are illustrated by Fig. i). The m = 0 branch 
corresponds to waves at the free surface, and it almost merges with the ~ axis in the (k, 
m) region shown in Fig. 2. 

These curves enable one to determine the wavelengths, frequencies, and phase and group 
velocities for the linear stationary harmonic waves excited in the various ways. One needs 
to plot the characteristic for the corresponding perturbation w,(k) in the (k, ~) plane and 
examine the points of intersection between it and ~m(k). For a steadily moving point source, 
the perturbation characteristic is provided by the ~, = • U0k rays. In Fig. 2, a indicates 
such a ray for the typical U0 = 6.3 cm/sec. It intersects the ~i(k) branch at (kl, ~i) but 
does not intersect any other ~m(k) branches, including the one with m = 0, which is due to 
the surface tension, which means that linear waves in water do not exist for U 0 < 24 cm/sec 
[5]. A ring in stationary motion therefore excites directly only the first internal mode in 
this example. 

The barrier is a source of secondary waves, and it resembles any other immobile obstacle 
in that the characteristic of this source in the (k, ~) plane is the straight line ~, = ml 
indicated by b in Fig. 2. It intersects all the ~m(k) branches, so the barrier interacts 
with a monoharmonic wave to radiate an infinite set of secondary waves having identical 
frequency m~ but differing lengths I m = 2v/k m. The energy transfer from the basic wave can 
be to higher or lower modes. 

There is a relationship between the k m for the (i.i) density distribution, which can be 
put as follows in the asymptotic case (HI/6, H2/5) § =: 

k~+~ = k~ + 2 V ~ / V  ~ ~g~ ( 1 . 3 )  

(g is the acceleration due to gravity). The major parameters are the critical velocities, 

which are defined by c* m = lim ~n/k = |Jm d~m/dk. In particular, in the linear theory one 

can examine only pertrubations whose velocities do notexceed Cm*. An interesting nonlinear 
effect for a ring moving with U 0 close to Cm* is that there are perturbations far ahead of 
the wing [41. 

2. Figure 3 illustrates some effects arising from internal waves interacting with a 
broad threshold, where part a is for the absence of a threshold with H~ = 8, H~ = 8.1, h ~ = 
4.8, 6 o = 1.7, e = 0.011, U 0 = 6.4 cm/sec and t.~ = 16 sec (the superscript 0 means that the 
corresponding quantity is normalized to D = 2 cm, while t.~ is the time from the start of 
wing motion). The picture relates to the range in x where"the barrier is subsequently placed. 
Two thin layers are colored, which are symmetrically placed with respect to the boundary 
and are separated by 0.756. The synchronism in the oscillations in those layers confirms 
that the wing excites only the first internal mode in the absence of the barrier. 
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Figure 3b is for a barrier with length s = 24 immersed at b ~ = 2.9 and used with U 0 = 

6.6 cm/sec and t, = 34 sec. The other parameters are as in Fig. 3a, while the time at which 
the leading edge of the wing passed above the right-hand vertical boundary of the threshold 
(Fig. i) was t I = 26 sec. Here the synchronism between the oscillations in the tagged 
layers is disrupted and one can clearly see higher modes, where estimates from (1.3) indicate 
that the barrier excites the mode with m = 2 most extensively. 

Figure 3c is for a shorter barrier having s = 12, H~ = 7, H~ = ii, b ~ = 2.1, h ~ = 6.5, 
6 o = 3.4, e = 0.012, U 0 = 5.5 cm/sec, t, = 65 sec (tl = 33 sec). Here the barrier excites 
several modes extensively, and the effect is so substantial that local instability occurs 
in the internal waves. 

Figures 4 and 5 show the effects from a barrier with a sharp edge. In Fig. 4, H~ = 9, 
H~ = 5, h ~ = 3.5, 6 o = 1.4, e = 0.012, U 0 = 5.1 cm/sec. The colored layer with thickness 
about 0.56 lies near the boundary. Picture a is for no barrier with t, = 40 sec, where the 
first two wave ridges behind the ring have virtually attained the stationary state. In 
this example, there are no explicit constraints on the scope for describing the waves from 
the linear theory, since this U 0 is much less than c'i = 7.5 cm/sec and the wave slope a/l = 
0.05 is quite small (a is amplitude and % wavelength). In particular, the wavelength lg = 
17.2 in picture a agrees well with that predicted by the linear theory for the first mode, 
~ = 19.1. Figure 4b is for a barrier with b ~ = 2, t, = 49 sec (tl = 6.6 sec). There is 
local thickening in the colored layer near the barrier, which over time degenerates into a 
burst of waves much shorter than the main wave. These secondary waves rapidly degenerate 
because of the viscosity. They can be traced in not very prominent form in picture c, which 
applies for this example with t, = 56 sec. 

When U 0 lies near Cm* , nonlinear effects become important and the barrier effect on- 
creases (Fig. 5), as is evident from experimentsunder conditions here analogous to those for 
Fig. 4, apart from U 0 = 8.0 cm/sec, which is somewhat more than ci* = 7.5 cm/sec. Part a is 
without a barrier at t, = 23 sec. The waves generated by the ring are stable but clearly 
nonsinusoidal. Ahead of the wing, there are strong perturbations, whose leading edge propa- 
gates at a speed in excess of U 0. Parts b and c are with the barrier for t, = 23.2 and 29.2 
sec correspondingly. After the wing has passed over, there are liquid flows varying in in- 
tensity and direction from one side of the barrier to the other, which is accompanied by 
local stability loss and a marked change in wave shape. A large part of the energy in the 

wave motion is dissipated in mixing. 

The internal waves are reflected at the barrier without change in length, as in a uni- 
form-density liquid. This is well recorded by the wave meters. Figure 6 shows the signals 
from them without the barrier and with a barrier with a sharp edge for H~ = 8, H~ = 8.1, b ~ = 
I, h ~ = 4, ~0 = 0.45, e = 0.013, U 0 = 5.3 cm/sec, U0/c ~ = 0.59, t, - t I = 45 sec. The ab- 
scissa is the dimensionless time t o = sgt~/U 0, reckoned from the time when the leading edge 
of the wing passes over the barrier, while the ordinate is the deviation in the boundary 
from the equilibrium position y0 normalized to D. The y0 axis in each recording has been 
brought into coincidence with the instant when the leading edge of the wing passes over 

the wave meter. 

Parts a and b of Fig. 6 are for no barrier, and c and d for the barrier; a and c are 
derived from the wave meter placed before the barrier with x ~ = 12, while b and d are beyond 
the barrier for x ~ = -6. On account of differences in wave-meter sensitivity, the scale of 
the recordings along the y0 axis for x ~ = 12 is somewhat larger than that for x ~ = -6. 

The recordings without the barrier show [6] that the wing-generated perturbations are 
bursts of waves propagating with speed U 0 and having characteristic wavelength ~l and modu- 
lated by a longer wave, which is not described by the linear theory even for U 0 < c* I. The 
leading edge of the long wave runs continuously ahead of the wing and propagates in this 
example with speed c* I. The leading edge of the perturbations ahead of the wing take the 
form of a discontinuous wave with undulations or what is called an undulation bore. As time 
passes, the numbers of ridges and hollows in the undulation bore ahead of the wing increase. 
In Fig. 6, two depressions are formed ahead of the wing. A series of experiments was per- 
formed with U 0 = 3.5 cm/sec and H~ = 4 together with the above values for the other param- 
eters, when ahead of the wing there was an undulation bore containing four depressions at 

time sgt,/U0 = 260. 
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The wave bunch having wavelength X I exists only behind the wing. As time passes~ an 
increasing number of ridges and depressions will attain the stationary state, and new waves 
arise at the trailing edge. The oscillations in this train are damped because of the com- 
bined effects from nonstationarity and viscosity [6]. 

The waves ahead of the barrier are accentuated by it, and those behind it are attenuated. 
In the present example, the largest amplitude for the reflected waves constitutes about 25% 
of that for the incident ones. When the reflected and incident waves are superimposed, the 
seventh wave recorded by the sensor at x ~ = 12 is amplified by a factor 1.7 and the ninth by 
a factor 2.1. The maximum amplitude beyond the barrier for the transmitted wave at x ~ = -6 
is less by 28%. The intensity of the perturbations ahead of the wing are reduced by about 
the same amount. At large times, the waveform and wavelength in the main train behind the 
wing are altered behind the barrier. 

We also performed a series of experiments in which the wing moved between the barrier 
with the sharp edge and the interface. Here the effects from the hydrodynamic wake behind 
the wing caused the distortion of the internal-wave pattern by the barrier to be accentuated. 
The higher-mode excitation in the stratified liquid resulted in more rapid wave-energy dis- 
sipation at the obstacle than is the case for a homogeneous medium. In particular, modes 
may be excited at the obstacle that are unstable in the shear flow generated by the longer 
waves. The stability loss is accompanied by additional wave energy consumption in the mix- 
ing. That process occurs at the barrier for fairly wide ranges in the parameters. Also, 
even stable higher-mode oscillations are damped rapidly because of the viscosity. 

The energy transformation in a stratified medium has a further feature. Not all the 
energy consumed in the mixing ultimately becomes heat, as part of it goes to increase the 
potential energy of the system as a whole, as the center of mass is displaced upwards when 
a stable density stratification becomes uniform. 

An interesting feature of this interaction with an obstacle in an inhomogeneous medium 
is that the obstacle under certain conditions produces an effect very far away along the 
vertical from the perturbation source. In these experiments, we found theinterval-wave dis- 
ruption at a broad threshold even for b ~ + h ~ = 15, and that was far from being the limit. 

The effects from the threshold are the more pronounced the larger Fr~/h and ~/b; ~ is 
also important for a barrier with a broad threshold. Numerical calculations have been 
made [7] on surface-wave propagation in a homogeneous liquid above a recess at the bottom of 
a channel with length s and it was found that there were were minima in the wave transmis- 
sion coefficient for s multiples of 0.5. 

The authors are indebted to I. V. Sturova, whose program was used in the dispersion-curve 
calculations. 
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